M1.
D

M2.
(a) Correct translation

B1 for translation 4 right or 5 down or for 3 correct points without the triangle
(b) Correct reflection

B1 for reflection in $y=c$ or in $x=-1$
or for 3 correct points without the triangle

M3.
(a) Fully correct enlargement in correct position

B2 for enlargement SF2, wrong position or for 3 correct vertices plotted but no triangle drawn B1 for any other enlargement not SF1 or for 2 correct vertices plotted

Additional Guidance

Mark intention
(b) Alternative method 1

Rotation

Origin or $(0,0)$ or O
oe

180 (clockwise)
or 180 (anticlockwise)
or -180
oe

Alternative method 2

Enlargement and SF-1

Origin or $(0,0)$ or O

$$
o e
$$

Additional Guidance

Rotation, (0,0), 90 then 90
B1B1B0
Accept 180C for 180 (clockwise) B1

Accept $1 / 2$ turn for 180 B1

Accept $\binom{0}{0}$ for origin
B1
Enlargement (0,0)
B0B1
Allow rotate, rotating, rotational (symmetry)

Mixed transformations, e.g.
translation of 180
B0B0B1
reflection $(0,0)$
B0B1B0
Do not accept turn for rotation

Double transformations e.g. Rotate, translate
B0B0B0

M4.
(a) Fully correct enlargement

B2 for enlargement SF2, wrong position or for any enlargement centre P or for 3 correct vertices plotted but no triangle drawn

B1 for any other enlargement not SF1
or for 2 correct vertices plotted

Additional Guidance

Mark intention
(b) Alternative method 1

Rotation

Origin or $(0,0)$ or O
oe

180 (clockwise)
or 180 (anticlockwise)
or -180
oe

Alternative method 2

Enlargement and SF-1

Origin or $(0,0)$ or O
oe

Additional Guidance

Rotation, (0, 0), 90 then 90

Accept 180C for 180 (clockwise)

Accept $1 / 2$ turn for 180

Accept $\binom{0}{0}$ for origin

Enlargement (0, 0)

Allow rotate, rotating, rotational (symmetry)

Mixed transformations, e.g.
translation of 180
reflection (0, 0)

Do not accept turn for rotation

Double transformations e.g. Rotate, translate
B0

B0B0B0

M5.(a) Correct reflection
B1 for a reflection in any line parallel to an axis
B1 for correct vertices plotted but no triangle
(b) Fully correct enlargement drawn

B2 for enlargement with SF4
or for any enlargement centre $(1,1)$
or for 5 correct vertices plotted but no pentagon
or for 4 correct vertices and 1 incorrect plotted and pentagon drawn
B1 for any enlargement
or one side of correct length

M6.
(a) $3, \times 3$, 'times 3 ', '1:3'

Ignore units
(b) Alternative method 1

2 and 18 seen
Can be seen in a subtraction or on diagram

9

Alternative method 2

$$
3^{2}
$$

$$
\text { ft their sf } 3 \times 3
$$

9

M7.
(a)

B1 for line $x=2$ shown
B1 for reflection in $y=2$
B1 for any reflection in a line of form $x=a$ where a is less than 2.
(b)

B1 for any translation of form $\binom{p}{6}$ or $\binom{-5}{q}$
B1 for correct shape with top left corner at $(-5,6)$

M8.(a) Line $x=-2$ drawn

Additional Guidance

Line does not need to be full length of grid.
Line can be solid or dashed.
(b) Line $y=x$ drawn

Additional Guidance

Line does not need to be full length of grid.
Line can be solid or dashed.
(c) Translation

Accept Translate

9 right and 8 down

$$
\text { or }\binom{9}{-8}
$$

Accept (9, -8)

Additional Guidance

$$
(y=-8, x=9) \quad \text { is } \quad \mathrm{BO} \mathrm{BO}
$$

M9.

M10.(a) Valid reason
Strand (ii)
eg $14 \div 4$ is not a whole number
14 is not a multiple of 4
Because you need half centimetres
Half the perimeter has to be even
$14 \div 4=3.5$
$4 \times 3=12$ and $4 \times 4=16$

Additional Guidance

Because it wouldn't have the sides as a whole number

14 doesn't divide into a whole number
Not possible because all the sides must be equal
Q0
Nothing divides into 144 times (not true) Q0Not possible to make 14 using the same number 4 times
Q0$14 \div 4$ without an answer or correct comment
Q0The grid is not big enough
Q0
The square would not have equal sides Q0
(b) Valid reason

> Strand (ii)
> eg 12 is not a square number
> $\sqrt{12}$ is not a whole number
> $3 \times 3=9$ and $4 \times 4=16$
> $\sqrt{12}=3.4 \ldots$ or 3.5

> Q1

Additional Guidance

No number multiplied by itself equals 12
No whole number multiplied by itself equals 12
If it was a square it would have to be an area of 16 (not true)
The length and width would not match each other
Q0
Q0

It wouldn't have equal sides
The base can't be timesed by the height to give 12 because the sides need to be equal

Because 12 as an area would mean sides would be different lengths which would make the shape a rectangle not a square
Q0
Q0
(c) Correct shape drawn

Shape shown may be reflected or rotated
B1 for a Pentomino with no lines of symmetry and no rotational symmetry
B1 for any polyomino with no lines of symmetry and rotational symmetry of order 2

CANDIDATES MUST USE A DIFFERENT SHAPE TO THOSE GIVEN TO SCORE ANY MARKS

Accept any rotation or reflection of shape shown in mark scheme
If candidates do more than one, mark all and award the lowest mark

M11.Fully correct enlargement
B1 for 2 or 3 correct sides
B1 for fully correct enlargement using SF 2 or 4

M12.(a) Fully correct diagram with vertices within 1 mm
B1 for 2 or 3 sides correct from a full hexagon.
B1 for symmetrical diagram (about vertical line) with bottom vertex correct.
Ignore any internal lines.
(b) $(x) 3(x)$ or 1:3

Accept - 3 or both

M13.(a) 2 squares to the right and 3 up
B1 for 2 squares to the right or 3 up
(b) Rotation

90 clockwise or -90 oe
Accept $\frac{1}{4}$ of a turn clockwise
$(4,3)$

M14.
(a) $[1.4,1.6]$
accept as ratio in form 1:[1.4, 1.6] or as $\times[1.4,1.6]$
'increase by half' etc. BO
(b) 18
ft $12 \times$ their $14 a$

M15.
(a)

(b)

ft their (b) reflected in y-axis
Image in all 4 quadrants correctly reflected and shapes not labelled B1 B0.
If no labels and images in $4^{\text {th }}$ and 3^{d} quadrants only accept as B and C B2
A reflected in y axis and then x axis i.e. images in $2^{\text {nd }}$ and $3^{\text {dd }}$ quadrants with C in correct position B0 B1
(c) origin or $(0,0)$ or O

Multiple transformations, even if correct answer also seen is BOBO
180° or half-turn (direction need not be stated or can be ignored)
Correct answer or ft their C. eg if C is 1 unit to the left then the rotation will be 180° about ($-0.5,0$). Must be a rotation as this is stated in the question.
If a correct combined rotation is given eg 90° clockwise followed by 90° clockwise must have appropriate directions is B1 but 90° followed by 90° would be B0.

M16. Correct reflection
B1 for any reflection in a vertical line
or for three correct vertices

